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Urbanization affects vegetation within city administrative boundary and nearby rural areas. Gross primary production (GPP) of
vegetation in global urban areas is one of important metrics for assessing the impacts of urbanization on terrestrial ecosystems. To
date, very limited data and information on the spatial-temporal dynamics of GPP in the global urban areas are available. In this
study, we reported the spatial distribution and temporal dynamics of annual GPP during 2000–2016 from 8,182 gridcells (0.5° by
0.5° latitude and longitude) that have various proportion of urban areas. Approximately 79.3% of these urban gridcells had
increasing trends of annual GPP during 2000-2016. As urban area proportion (%) within individual urban gridcells increased,
the means of annual GPP trends also increased. Our results suggested that for those urban gridcells, the negative effect of
urban expansion (often measured by impervious surfaces) on GPP was to large degree compensated by increased vegetation
within the gridcells, mostly driven by urban management and local climate and environment. Our findings on the continued
increases of annual GPP in most of urban gridcells shed new insight on the importance of urban areas on terrestrial carbon
cycle and the potential of urban management and local climate and environment on improving vegetation in urban areas.

1. Introduction

Urbanization is a process with large changes in demography
and land transformation and management [1, 2]. Global urban
area was 0.65million km2 in 2000 and could increase to 1.2 mil-
lion km2 by 2030 [3]. At present, more than 50% of the global
population (7+ billion) live in urban areas, and approximately
70%–90% of economic activities take place there [4, 5]. Urban
areas, including both urban sprawl and urban footprint, where
there is close nature and human connections (cities, suburban,
periurban, and neighboring rural areas), tend to experience
more intensive and complex changes of local climate and envi-

ronment than do the remote rural areas [6–10]. As urban eco-
systems are complex and dynamic, it has been a challenge to
quantify and understand urban ecosystem structure, function,
and service [11, 12].

First, urbanization is characterized by an expansion of
impervious surfaces (e.g., roads, houses, and buildings)
within city administrative boundary. During urban expan-
sion, croplands and other natural landscapes were converted
to impervious surface [10, 13]. A few studies investigated the
impacts of urban impervious surface (UIS) expansion on
vegetation production and the carbon cycle in the urban
areas, and they reported losses of vegetation production
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and terrestrial carbon storage, primarily driven by the expan-
sion of urban impervious surface into vegetated areas [10, 14,
15]. Second, urbanization is characterized by urban land man-
agement, which affects the change and expansion of vegeta-
tion within the city administrative boundary and nearby
rural areas. As urban economy developed over time, many
cities increased their vegetation coverage and developed mul-
tilayer vegetation structure. Third, urbanization is character-
ized by the changes of local climate and atmospheric
composition in urban, suburban, periurban, and neighboring
rural areas [16, 17]. A few studies investigated the effects of
land cover change and local climate on vegetation in the large
cities and reported increased tree productivity and vegetation
greenness in many cities [18, 19]. Zhong et al. investigated the
spatial-temporal dynamics of urban expansion, vegetation
greenness, and GPP in megacity Shanghai, China, during
2000-2016 [20], and Cui et al. analyzed the interannual
changes of GPP over the ten most populous megacities in
the world during 2007-2014 [21]. These two studies reported
that there were large spatial-temporal changes of GPP and
GPP increased over years in these megacities.

Many studies have investigated the spatial-temporal
changes of global GPP [8, 22, 23], but the impacts of urbani-
zation on GPP at the global scale have received little attention
and are not well understood. The first reason is that the urban
areas account for a small proportion of the global landmass.
The second reason is that there are many types of land cover
types within a city, and thus it is very difficult to model and
estimate GPP for those pixels that are classified as urban. In
several global GPP datasets, the pixels that are classified as
urban have GPP value of zero or no data, for example, the
MODIS GPP/NPP data product (MOD17) [24]. The third
reason is that it is very hard to define the urban areas as the
city administrative boundary changed its sizes and shapes fre-
quently over years. Several studies reported the effect of
urbanization on vegetation could reach beyond the city
administrative boundaries [7, 25, 26]. To address these issues,
many studies have used gridcell-based data at various spatial
resolutions (e.g., 500m, 5km, and 0.5°) to study urban ecosys-
tems [20, 21, 27, 28].

A gridcell at coarse spatial resolutions (e.g., 5 km or 0.5°)
could cover (1) city area only, (2) rural area only, and (3) a
mix of both city and rural areas. Theoretically, urban expan-
sion within a gridcell started with an increase in urban imper-
vious surface (UIS), which reduce urban-rural vegetation
(URV) [21]. Urban land management also affects URV,
including (i) land cover change (such as new lawns, open
parks, and green-belts); (ii) vegetation species change and
growth in suburban, periurban, and neighboring rural areas;
and (iii) vegetation management (such as fertilization and
irrigation) [29, 30]. In recent years, many cities started to
improve and expand urban vegetation and considered urban
vegetation as one of major metrics for the society to address
the ecological and environmental impacts of urbanization
[31]. A few studies reported increased vegetation greenness
and lengthened growing seasons in urban areas over Mexico
City and the U.S. Great Plains [29, 32]. Other studies found
enhanced vegetation growth in urban areas, driven by ele-
vated temperature and atmospheric CO2 concentration and

favorable light and wind conditions [33–35], and the changes
of urban plant species in urban areas [36, 37].

In this study, we investigated the spatial-temporal
changes of GPP in the urban areas over the globe, which
serves as an indicator for us to assess the effects of (1) urban
expansion (UE, as measured by UIS) and (2) urban manage-
ment and climate (UMC) on vegetation (URV). We ana-
lyzed annual GPP data from the satellite-based Vegetation
Photosynthesis Model (VPM) [38, 39] and quantified the
effects of urbanization on GPP in urban areas over the
world. The global urban extent data and GPP data during
2000–2016 were used and organized into 0.5° (latitude and
longitude, ~50 km at equator) spatial resolution, and most
of the resultant gridcells have cities, suburban, periurban,
and neighboring rural areas. This study will identify those
gridcells that had losses or gains or no substantial changes
of GPP as urban expansion continued over the years, which
would shed new insights on the effects of urbanization on
GPP in urban areas (or urban ecosystems).

2. Materials and Methods

2.1. Global Urban Area Expansion Data. We used the global
urban area expansion dataset that was developed by the Seto
Laboratory at Yale University. The original raster dataset has
a spatial resolution of 5 km, and the urban area estimates for
2030 was generated by overlaying 1,000 forecasts of urban
expansion [3]. In the raster dataset, the category 101 repre-
sents existing urban area gridcells in 2000, and the categories
from 0 to 100 refer to gridcells that may become urban area
by 2030 with a probability ranging 0 to 100. Following the
same definition and procedure described in the Seto’s study
[3], we used 75% as a threshold to define the urban area grid-
cells in 2030 as 75%–100% range basically represents a “most
likely occur” case. The number of gridcells with a probability
of >75% accounts for more than 85% of the total number of
gridcells with a probability of >50%. The urban area data in
2000 and 2030 at 5-km spatial resolution was aggregated to
0:5° × 0:5° (-135.8°W~177.8°E and -54.75°S~65.25°N) grid-
cells, and then we calculated percentage (%) of urban areas
within individual gridcells. We selected those gridcells that
contain more than 1% urban area in 2000 to represent
urban-related gridcells [5, 40]. We calculated the difference
between urban area in 2000 and projected urban area in
2030 and then did linear interpolation to estimate urban area
in 2016 (Figure S1). Note that one global dataset of impervious
surface from analyses of satellite images has recently been
produced and could be used in future study [41, 42]. We
compared the impervious surface data from this study (the
years of 2000 and 2016) with the impervious surface data
from the GLC_FCS30 (the years of 2000 and 2015) at a
spatial resolution of 0:5° × 0:5° [42]. The fitting coefficients
(R2) between these two datasets were 0.67 in 2000 and 0.62
in 2016, respectively (P < 0:05), which shows a reasonable
consistency between these two impervious surface datasets in
2000 (Figure S2). The bias in impervious surface area
estimates between these two datasets in 2015(2016) could be
attributed to the fact that the GLC data in 2015 were derived
from analyses of satellite images. In this study, we used
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“urban gridcells” at 0.5° spatial resolution as our study areas
(20.5 million km2) for two reasons. First, urban gridcells at
such coarse spatial resolution could cover urban, suburban,
periurban, and any adjacent rural areas which may have a
certain degree of socioeconomic and functional integration
with urban areas [3, 7]. Second, we used the GOME-2 solar-
induced chlorophyll fluorescence (SIF) data at 0.5° spatial
resolution to evaluate urban GPP data (see Section 2.2).

2.2. Global Gross Primary Production (GPP) Data.Global GPP
dataset at 500-m spatial resolution and 8-day temporal resolu-
tion during 2000–2016 was from the satellite-based Vegeta-
tion Photosynthesis Model (VPM) [38, 39]. In order to be
consistent with the spatial resolution of urban area dataset
and the GOME-2 SIF dataset, GPP data were spatially aggre-
gated to a 0:5° × 0:5° grid. We generated the monthly and
annual GPP data by summing the initial 8-day GPP data.

2.3. GOME-2 Solar-Induced Chlorophyll Fluorescence Data.
Solar-induced chlorophyll fluorescence (SIF) is the energy
emitted by plants after chlorophyll absorbs photosynthetically
active radiation (PAR). We obtained the SIF data from the
Global Ozone Monitoring Instrument 2 (GOME-2), and the
SIF (V26) dataset during 2007-2016 has a spatial resolution
of 0:5° × 0:5° grid and monthly temporal resolution [43]. As
SIF is related to light absorption by green vegetation, many
studies reported strong linear correlation between SIF and

GPP over weekly to monthly time scales [21, 43–45]. In a pre-
vious study, we also evaluated the consistency in seasonal
dynamics of GPP and GOME-2 SIF in ten megacities [21].
In this study, we analyzed the spatial-temporal consistency
between SIF and GPP over all the urban gridcells in the world.

2.4. Analytic Framework on the Effect of Urbanization on GPP.
To quantify the impact of urbanization on GPP over years
within individual urban gridcells, we developed a conceptual
framework that considers the effects of both urban expansion
(as measured by UIS) and urban management and climate
(UMC) on urban-rural vegetation (URV) and frames the
hypotheses on their likely impacts on GPP dynamics, based
on literature review and synthesis. Urbanization could have
positive and negative impacts on URV, and we use GPP as
the metric for URV in this study. First, urban expansion
(expansion of impervious surface) in the urban gridcell (UIS)
could result in a loss of vegetation (URV) that is a negative
effect (-) on GPP. Improved urban management and local cli-
mate within the urban gridcell (UMC) could have a positive
effect (+) on URV and GPP (Figure 1). We propose three
hypotheses on the impacts of urbanization on interannual
trends of annual GPP: (i) H0: The impact of UIS onGPP is sim-
ilar to the impact of UMC on GPP, which results in no net
change in annual GPP; (ii) H1: The impact of UIS on GPP is
larger than the impact of UMC on GPP, which results in a
decrease of annual GPP; and (iii) H2: The impact of UIS on

Year

G
PP

 (g
 C

 m
−

2 y
r−

1 )

GPP trend

Positive trend (+)

Negative trend (−)

U
rb

an
 m

an
ag

em
en

t a
nd

 cl
im

at
e (

U
M

C,
 +

 ef
fe

ct
)

Expansion of urban impervious surface (UIS, -effect)

A
nn

ua
l G

PP
 ch

an
ge

 (g
 C

 m
−

2 y
r−

1 )

Urban area percentage (%)

H2

H1

H0

H0: UIS > UMC, negative effect (−)

H1: UIS~UMC, positive/negative

effect (+/−)

H2: UIS < UMC, positive effect (+)

0
4
8

12
16
20

0 50 100

Δy = y(x_0)
−y(x_UE%)

G
PP

 ch
an

ge
 (g

 C
 m

−
2 y

r−
2 )

Urban area percentage (%)

Figure 1: The hypothesis and analysis framework in this study. Vegetation within an urban gridcell (URV or GPP) is affected by (1)
expansion of urban impervious surface (UIS), which is a metric for urban expansion (UE), and (2) urban management and climate
(UMC). Annual GPP trend (gCm-2 yr-1) means the interannual GPP variation over year. H0, H1, and H2 (red, yellow, and blue lines)
are three-basic hypothesis for analyzing offsetting effects of urbanization on GPP. To further quantify the impact of urbanization on
annual GPP (ΔGPP), we hypothesize that there is a linear relationship between the changes in percent urban areas (ΔUIS) and the
annual GPP trends. The subfigure in upper left and lower right corners are the explanatory charts to calculate the GPP loss caused by
the negative impact of UIS (Δy = ΔGPP).
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Figure 2:1 Spatial distributions of multiyear mean SIF and GPP during 2007-2016 in all the urban gridcells. (a) SIF data; (b) GPP data; (c) the
scatterplot between GPP and SIF for individual urban gridcells.
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GPP is smaller than the impact of UMC on GPP, which results
in an increase of annual GPP.

In the conceptual framework, we hypothesize that there is a
linear relationship between the changes in percent urban areas
within urban gridcells and the changes of GPP over years.
Then, a linear equation can be used to express the negative
impact of UIS on GPP trend:

mGPP = β × ΔUIS + α, ð1Þ

which shows the linear relationship between ΔUIS and the
GPP interannual trend; the unit of mGPP is gCm-2 yr-1%-1;
the unit of ΔUIS is percent of the urban area (%); α and β
are the fitting parameters. As shown in Figure 1, the parameter
β can be negative and hypothesis for analyzing effect of urban-
ization on GPP is H1.

The annual GPP trend before urbanization or without
the impact of urbanization is equal to α (ΔUIS = 0); the unit
of α is gCm-2 yr-1. Then, the loss of annual GPP trend
caused by expansion of impervious surface (ΔGPP) can be
calculated as

ΔGPP = α –mGPP = α – β × ΔUIS + αð Þ = –β × ΔUIS: ð2Þ

Finally, the GPP interannual loss (LGPP) along with the
increasing of percent urban areas (ΔUIS) can be recon-
structed using

LGPP = ΔGPP × Year, ð3Þ

SGPP = sum LGPP × Areað Þ, ð4Þ

where the unit of LGPP is gCm-2. SGPP is the global total
GPP loss caused by UIS; and its unit is gC.

3. Results

3.1. Spatial-Temporal Consistency between GPP and SIF in
Urban Areas. As shown in Figures 2(a) and 2(b), there is
good agreement in the spatial distributions of multiyear
mean SIF and GPP during 2007-2016 over the 8,182 urban
gridcells. High SIF and GPP values mainly occurred in the
Southeastern Brazil and Argentina. Multiyear mean SIF
and GPP were 0.68mWm-2 nm-1 sr-1 and 966.16 gCm-2 yr-1,
respectively. The maximum SIF and GPP during 2007-2016
were 1.4mWm-2 nm-1 sr-1 and 3910.61 gCm-2 yr-1, respec-
tively. A 2-dimensional scatterplot of SIF versus GPP shows
significant correlation between SIF and GPP in the urban
gridcells (Figure 2(c)).

Most of the gridcells and urban gridcells showed the
significant linear correlation between monthly SIF and GPP,
especially in urban gridcells in the middle to high latitudes
(Figure S3). The annual and monthly mean SIF and GPP
from 2007 to 2016 also showed good temporal consistency.
Furthermore, the correlation analysis indicates that 78% of
urban gridcells pass the significant test of 0.05. Annual GPP
and SIF show a strong linear relationship (correlation
coefficient r = 0:79), providing additional confidence in our
GPP data that are used for the study of urban areas (Figure 3).

3.2. Magnitude and Interannual Trends of GPP in Urban Areas.
Of the total 58,158 half-degree land gridcells (excluding Antarc-
tica and Greenland) over the globe, 8,182 gridcells had a range
of 1% to 69% urban areas in 2000 (Figure 4(a)), with a mean
value of 3.3% and standard deviation of 4.8% (Figure 4(a) and
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Figure S4). In 2000, these 8,182 urban gridcells cover a total of
20.5 million km2 land area. The mean value of annual GPP
within these urban gridcells in 2000 is 1,215.8 gCm-2yr-1

(Figure 4(b)). Approximately, 63.1% of these urban gridcells
had annual GPP of ≥1000gCm-2 yr-1 (Figure 4(b)). In 2000,
the ratio of urban GPP (GPP within urban gridcells) to global
land GPP was 20.8%, which was higher than the ratio (15.4%)
of urban gridcell area over global land area (132.8 million
km2, excluding the Antarctic continent and Greenland).

The annual rates of changes in urban GPP during 2000–
2016 among the 8,182 urban gridcells had substantial spatial
variations and range from -55.34 to 43.38gCm-2 yr-1

(Figures 4(c) and 4(d)). A total of 6,482 gridcells had increasing
trends of annual GPP during 2000–2016, with a mean value of
9.1 gCm-2 yr-1. The remaining 1700 (20.8%) urban gridcells
had decreasing trends, with a mean value of -7.11 gCm-2 yr-1.

The total annual GPP in the 8,182 urban gridcells varied
from 24.38 PgC in 2000 to 26.1 Pg C in 2016, with an annual
increasing rate of 0.11 PgCyr-1 (Figure 4(e)). The total
annual GPP from the nonurban gridcells varied from
109.57 Pg C in 2000 to 113.92 PgC in 2016, with an annual
increasing rate of 0.30 PgC yr-1. In order to eliminate the
possible interference caused by the value size of the global
and urban GPP to the interannual changes and be conve-
nient for directly comparison, a dimensional expression is
transformed into a dimensionless expression. We normal-
ized the rates of changes for urban GPP and nonurban
GPP, and the resulting annual rate of change in the GPP
in urban areas was similar to that of the nonurban GPP
(0.052 vs. 0.050), and the interannual variation of nonurban
GPP during 2000-2016 was slightly larger than that of urban
GPP (Figure 4(f)).
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Figure 4: Spatiotemporal variations of urban GPP and nonurban GPP in the world. (a) Spatial distribution of urban gridcells; (b) mean
annual GPP in urban gridcells in 2000; (c) interannual trend of urban GPP during 2000–2016; (d) P value significance test for the
interannual trend of urban GPP during 2000–2016; (e) interannual variation of urban GPP (GPP_U, GPP within urban gridcells, and
warm color) and nonurban GPP (GPP_NU, GPP within nonurban gridcells, and cool color); and (f) corresponding result after
normalization of urban GPP and nonurban GPP by ðGPP –GPPminÞ/ðGPPmax –GPPminÞ.
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3.3. Effects of the Percent Urban Areas in 2000 on the
Interannual Trends of GPP during 2000–2016. We investi-
gated to what degree the interannual trends of GPP during
2000–2016 were affected by urban areas in 2000 (treated as
an initial condition). Interannual trends of GPP in the urban
gridcells have a dispersive distribution along percent urban
areas within the urban gridcells in 2000 (Figure 5(a)). Those
urban gridcells with small percentages of urban area in 2000
have larger variations of GPP trends among the gridcells, in
comparison to those urban gridcells with a large percentage
of urban area in 2000.

We calculated the averages of GPP trends by the percent
urban areas within urban gridcells in 2000. The simple linear
regression model shows a negative relationship between the
mean annual GPP trends and percent urban areas in 2000,
with a slope of -0.093gCm-2yr-1 over one percent urban areas
within urban gridcells in 2000 (Figure 5(b)). Because GPP was
affected by both UIS and UMC, the slope indicated that the
net effect of urbanization was negative. The total GPP loss
(SGPP in equation (4)) of 0.0061PgCyr-1 caused by initial
urbanization was quantified by the observation of the relation-
ship between GPP trends and initial percent urban areas. The

ratio of “GPP loss/global GPP in 2000” was 0.025%. The
results suggest that the GPP within the urban gridcells have
benefit from the positive effect of UMC to some extent. The
results also suggest that those gridcells with large percent
urban areas in 2000 had relatively smaller potential to increase
carbon uptake (GPP) due to the limited vegetation areas
within an urban gridcell. Correspondingly, those gridcells with
small percent urban areas in 2000 had large potential to either
increase or decrease carbon uptake (GPP), dependent upon
how well vegetation in urban areas were managed. We further
calculated mean annual GPP trends for 6,488 urban gridcells
with positive annual GPP trends (Figure 5(c)) and for 1,694
urban gridcells with negative annual GPP trends (Figure 5(d)).

3.4. Effects of Urban Area Expansion during 2000–2016 on
the Interannual Trends of GPP. We calculated urban area
expansion between 2000 and 2016 for individual urban grid-
cells (Figure 6). UIS trends in 3461 urban gridcells vary from
1% to 43%, and the remaining 4721 urban gridcells had UIS
trends of less than 1% (Figure S5). Most of those gridcells
with large UIS trends occurred in developing countries such
as China and India.
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Figure 5: Relationship between annual GPP trend and percentage of urban area in 2000. (a) Scatterplot of annual GPP trend and percent
urban areas for 8,182 gridcells. (b) Scatterplot of mean annual GPP trend and percent urban areas in 2000 for 8,182 gridcells. (c)
Relationship between mean annual GPP trend (positive trend) and percent urban areas in 2000 for 6,488 gridcells. (d) Relationship
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binned, and the bin width of urban area percentage is 1%.
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We investigated the relationship between interannual
GPP trend and UIS trend (% change) during 2000–2016
(Figure 7(a)). Based on conventional knowledge and
hypothesis H0 (Figure 1), GPP in the urban areas will decrease
over these years owing to the negative impact of UIS. We used
the mean annual GPP trend to fit a linear regression model for
individual gridcells. The results showed that 20.7% of urban
gridcells conformed to the hypothesis with UIS>UMC (nega-
tive effect, H0 in Figure 1), and 79.3% of the urban gridcells
were consistent with the hypothesis with UMC>UIS (positive
effect, H2 in Figure 1). Given the fact that annual GPP trends
in urban gridcells also contain the impacts of large-scale envi-
ronmental change such as global warming and increased

atmospheric CO2 concentration, we do not attribute the posi-
tive trends of GPP in urban areas solely to one single factor of
UMC. However, GPP in urban areas did show a significant
positive trend (0.2 gCm-2 yr-1) as the percentage of urban
areas increased (every 1% expansion of impervious surface)
over these years (P < 0:05, Figure 7(b)).

We assume that small urban expansion is not easy to
find precisely at a large gridcell (0.5° latitude and longitude)
and the urban mapping has a 5% scale error. We split the
8,182 urban gridcells into two groups: group #1 with no
obvious UIS expansion (Δ%<5%) and group #2 with obvi-
ous UIS expansion correspondingly (Figure 8). The average
values of annual GPP trend of group #1 and group #2 were
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5.54 and 5.92 gCm-2 yr-1, respectively, showing that the
change of GPP trend for the two groups were similar overall.

4. Discussion

4.1. Definition of Urban Areas and Significance of Urban
GPP on Terrestrial Carbon Cycle. There are no standard def-
initions for urban areas [8]. Urban areas can be delineated
directly by city administrative boundaries and thus include
impervious surface, vegetated area, barren land, and surface
water body. Impervious surface area is one of land cover
types within urban areas and often used to delineate urban
areas [8, 46]. The Census in America uses the population
size to define urban extent [6]. Several studies reported that
the effects of urbanization on vegetation are much larger
than the city administrative boundaries [7, 25, 26]. In addi-
tion, urbanization could lengthen the growing season of veg-
etation, which increases carbon uptake by vegetation [25,
47]. In an effort to addressing these complex problems,
Churkina [7, 14] proposed a concept of “urban system”
and used it for their modeling study of the carbon cycle.
Urban system includes both urban sprawl and urban foot-
print. In practice, the spatial extents of urban systems (both
urban areas and their spatial impacts) are still very difficult
to define and delineate, especially at the global scale. To date,
there is no public dataset that delineates the administrative
boundaries of all urban areas in the world and defines the
spatial extents affected by urbanization. As an alternative to
the urban administrative boundary dataset, it is reasonable
for researchers to use urban gridcells to explore the impacts
of urbanization on GPP within the urban gridcells. Many
scholars have already used urban gridcells to study cities.
Zhang et al. (2004) used 0:5° × 0:5° urban gridcells to ana-
lyze the effect of urban climates on vegetation phenology
[25]. Cui et al. used 0:5° × 0:5° urban gridcells to analyze
the temporal consistency between GPP and solar-induced

chlorophyll fluorescence in the ten most populous megacity
areas over the world [21]. In this study, we used “urban grid-
cells” to describe our study areas (urban areas), which can be
thought of as the sum of urban, suburban, periurban, and
any adjacent rural areas which may have a certain degree
of socioeconomic and functional integration with urban
areas (Figure 9) [3, 7].

GPP in urban areas is one of the essential components
for the global carbon fluxes [7, 48, 49]. Churkina assessed
the GPP from the urban areas and their footprints and
reported that the total GPP amount from the urban areas
varies in the range of 14–43PgCyr-1 [14]. Our results
showed that the total GPP in the urban areas varied in
the range of 24.38–26.1 PgCyr-1. One recent study assessed
the impact of urban expansion and reported that global net
primary production (NPP) had a loss of 22.4 TgCyr-1 dur-
ing 2000-2010, driven by urban expansion [28], while our
study reported that the total GPP in urban areas increased
during 2000-2016. The discrepancy between these two
studies can be explained in part by the GPP/NPP datasets
used in these two studies. Liu et al. 2019 study [28] used
the MOD17A2 GPP/NPP datasets, which has GPP and
NPP values of zero for urban pixels as the GPP/NPP model
does not calculate GPP/NPP for urban pixels. In compari-
son, the VPM model calculates GPP for urban pixels.
Figure 10 shows the spatial distributions of GPPMOD17A2
and GPPVPM over Shanghai, China. The results in Liu
et al. study represent the impact of UIS expansion on veg-
etation GPP/NPP, a loss of GPP/NPP during 2000-2010. In
comparison, the results in our study represent the impact of
both UIS and UMC on vegetation GPP, a gain of GPP dur-
ing 2000-2016. In addition, the sizes of urban gridcells used
in these two studies also differ, which affects to some degree
assessment of the effect of urbanization on vegetation over
years. Therefore, careful selection of GPP datasets is needed
for the study of urbanization on vegetation [28].
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4.2. Continued Increase of GPP in Urban Areas. It is a com-
mon view that vegetation greenness, gross, and net primary
production will decrease in the process of urbanization, as
urban impervious surface expansion would reduce vegetation
[14, 15]. Several studies reported that the urban heat effect on
vegetation phenology in and around urban areas with 0.5°

and 0.25° gridcells [21, 47, 50]. In our study, benefited from
the positive effect of UMC, GPP in a large proportion of the
urban gridcells continued to increase during 2000–2016. For
many urban gridcells, the initial urban impervious surface
conditions affect GPP trend, the larger the original urban area
percent is, the smaller potential of annual GPP increases. For
many urban gridcells, the rates of urban expansion also affect
GPP trends, the larger urban area expansion, the more
increase of annual GPP. Therefore, the effect of urban expan-
sion (or urbanization) on GPP is complex and is jointly con-
trolled by both UIS and UMC.

The interannual variation of urban GPP was partially in
conformity with that of nonurban GPP (Figure S6). Some
studies have shown that NDVI and EVI of vegetation in the
world and individual cities increased over the past decades

[20, 23, 51]. Nonurban GPP had large drops in the years of
2005, 2008, and 2012 (Figure 4(f)), and in comparison, urban
GPP had relatively small drops in those years; especially, the
situation may be more pronounced in poor environmental
conditions for vegetation [15] or when the GPP decreases
sharply (Figure 4(f)). This actually reflects that UMC can
resist the impacts of unfavorable environments on vegetation
and urban areas may help reduce interannual variation of
vegetation growth to a certain extent [52, 53].

The results from this study are consistent with several
previous studies, which have shown evidence of both positive
and negative effects of urbanization on vegetation (Table 1)
[45]. In addition to urban impervious surface area expansion,
people set-up new green space and plant new types of vege-
tation in urban areas [21, 54]. People also do effective man-
agement and protection of vegetation, including irrigation
and fertilization. Furthermore, increased atmospheric CO2
concentration and local climate also affect vegetation [55,
56]. As the results of all these varying factors, the net effects
of urbanization on vegetation are location-specific, complex,
and dynamics. Therefore, the study on the effects of

Impervious surface

Park and green space

Urban built-up area

Peri-urban area

Urban gridcell/Urban areas

Urban administrative division

Urban administrative boundary

Urban population density

Urban footprint

Figure 9: Urban areas and their spatial impacts.
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urbanization on vegetation cannot be focused solely on the
effects of impervious surface expansion, which is only one part
of urbanization. It is important to consider the effects of both
UIS and UMC on vegetation in the future study of urban
ecosystems.

4.3. Error Sources and Uncertainty of This Study.We recognize
that urban study would be more accurate if the study area is
delineated by city administrative boundary. Our global urban
study is affected by (1) lack of city boundary maps for all cities
in the world and (2) the difficulty to delineate the rural areas
affected by urbanization as urbanization is likely to affect
vegetation beyond the city boundary itself [7, 10]. Moreover,
because of the mix of anthropogenic carbon emissions and veg-
etation carbon fluxes in urban areas, it is complex and difficult
to directly observe the carbon cycle of urban area [47]. When

using the grid data to define urban area, we can use satellite
data such as the GOME-2 SIF data, to evaluate the GPP esti-
mates from the models at the scale of a single grid [19, 27].
The offsetting positive and negative impacts of urbanization
can help to explain the increasing trends of GPP in urban
areas. The other reason is the contribution from the natural
background change; global GPP also increased [38]. In terms
of urban GPP, the positive effect of vegetation encompassing
urban areas can offset the negative effect of UIS, and the vari-
ation of urban GPP will be partially in conformity with that of
nonurban GPP.

5. Conclusions

Urbanization is complex and varies substantially over space
and time, driven by varying environmental and socioeconomic
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Figure 10: Spatial distributions of land cover types in 2016 and GPP estimates of July 11, 2016, in Shanghai, China. (a) Land cover maps
from the MCD12 dataset, (b) GPP from the GPPVPM dataset, and (c) GPP from the MOD17A2 dataset. Note that the MOD17A2 dataset has
GPP and NPP value as zero (or Nodata) over those urban pixels that are dominated with the impervious surface.

Table 1: The impacts of urban expansion on vegetation in urban areas.

Variable Region Impact directions References

Total GPP Global 24.38–26.1 PgC yr-1 This study

GPP loss Global 0.0061 PgC yr-1 This study

GPP Michigan (U.S.) Increase Zhao et al. (2007) [52]

NPP U.S. Decrease Imhoff et al. (2014); Milesi et al. (2003) [15, 57]

NPP Global Decrease 22.4 TgC yr-1 Liu et al. (2019) [30]

Urban vegetation growth 32 urban areas (China) Prevalent increase Zhao et al. (2016) [19]

Urban forest productivity Massachusetts (U.S.) Increase Briber et al. (2015) [18]

Urban forest productivity New York (U.S.) Increase Searle et al. (2012) [35]

Carbon stock Denver–Boulder (U.S.) Substantial increase Golubiewski (2006) [58]

Carbon stock Seattle (U.S.) Aboveground decrease Hutyra et al. (2011) [34]

Carbon uptake Global 14–43 PgC yr-1 Churkina (2016) [14]

Carbon release Global 0.05 PgC yr-1 Churkina (2016); Seto et al. (2012) [14, 10]
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factors [59]. It is very difficult to assess the effects of urbaniza-
tion on gross primary productivity of vegetation at the global
scale, because we face several major issues related to the con-
cepts, data, and methods. The major issue is the definition of
urban area and the geographical domains affected by urbaniza-
tion directly and indirectly. People often use city or urban
administration boundary, impervious surface area, and urban
system [60, 61]. In this global-scale study we used the defini-
tion of urban systems, as it allows us to study both urban
sprawl and urban footprint. We used 0.5° urban gridcells, in
part because we used GOME-2 SIF data at 0.5° spatial resolu-
tion to evaluate GPP data [62, 63]. In addition, we used simple
linear dynamics to approximate the time course of urban
expansion during 2000–2016. By using simple concept, data,
and methods, this study reveals that the negative effect of
urban expansion (as measured by urban impervious surface
expansion) on GPP are to some degree compensated by the
positive effects of urban land management, land use, local cli-
mate, and atmospheric CO2 concentration [64–67]. This study
also shows that the interannual trends of urban GPP was
slightly larger than that of nonurban GPP, but the interannual
variation of urban GPP was slightly smaller than that of non-
urban GPP. Such analysis could be further improved in the
near future after we have access to refined spatial datasets
(e.g., SIF data from the TROPOMI mission and GeoCarb mis-
sion) and improved understanding of the time course of urban
expansion. Our finding on the continued increases of urban
GPP during 2000–2016 highlights the benefit and potential
of improving urban vegetation management in the world. In
the foreseeable future, more effort should be given to develop
appropriate policies and management practices that could fur-
ther improve urban vegetation and its management, which
would help address United Nations Sustainable Development
Goal #11 – Sustainable Cities and Communities.
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1. Please check Figures 2, 4, 6, 8, and 10 if captured
correctly.
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